
NEW DATABASE* OF 36 VIDEO CLIPS
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Size – Rewatch, color- Likability
* now publicly available
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EMOTIONAL TAG PREDICTION: DATA COLLECTION
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EMOTIONAL TAG PREDICTION: SCENARIOS

 Implicit Media Tagging: from viewer’s facial 

expressions, learn to predict the clip’s VALR score

 Affect Prediction: from viewers facial expressions, learn 

to predict her own subjective VALR report

 Training data: 

 RGB-D recordings of facial expressions 

 Set of training video clips with assigned ratings, either VALR 

score or viewer’s subjective VALR ratings

 Task: predict VALR rating from recording of facial 

expressions when viewing a new video clip
13

IC
R

I-C
I 2

0
1

7
 R

e
tre

a
t, M

a
y
 9

, 2
0

1
7



RGB-D RECORDING: PRE-PROCESSING

 Compute time series intensity of ~50 Action 

Units

 Identify period of maximal emotional response
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CURRENT WORK

IC
R

I-C
I 2

0
1

7
 R

e
tre

a
t, M

a
y
 9

, 2
0

1
7



ACTION UNITS IN FACIAL EXPRESSION OF VIEWERS
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RAW DATA
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Highlight Period
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TWO STEP PREDICTION ALGORITHM

 Step 1, analysis of short video segments:

 Divide HP into fixed size segments

 f1: predict emotional tag for each segment

 Step 2, analysis of whole clip:

 Compute moments of emotional tag prediction  over all segments

 f2: predict final emotional tag

prediction with regularized ridge regression

Leave One Out (LOO) train-test paradigm
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FACIAL ACTIVITY CHARACTERIZING FEATURES

Bag of words:

• K-means clustering (k=7)

• Done simultaneously over all subjects and all videos

AU1 intensity
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video. 
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video. 

High RichnessLow Richness
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appeared in the video

Richness=1 

all words appeared 
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video.

 Typicality – percent of variance explained by the 7 

clusters. 
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video.

 Typicality – percent of variance explained by the 7 

clusters. 

k

High TypicalityLow Typicality
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video.

 Typicality – percent of variance explained by the 7 

clusters/words.

 Cluster Distribution – The relative number of 

frames in which each word appeared

k
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FACIAL FEATURES COMPUTATION

Intensity Features
 Ratio (Frequency)

 Level

Dynamic features
 Length

 Change

 Fast Change

Moment features
 Mean, variance, skewness, kurtosis

Miscellaneous Features
 Number of smiles and blinks
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TWO STEP PREDICTION ALGORITHM

 Step 1, analysis of short video segments:

a. Divide HP into fixed size segments

b. .f1: predict emotional tag for each segment

 Step 2, analysis of whole clip:

a. Compute moments of emotional tag prediction  over all segments

b. .f2: predict final emotional tag

prediction with regularized ridge regression

Leave One Out (LOO) train-test paradigm
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EXAMPLE: ONE VIEWER
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R=0.791
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RESULTS
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RESULTS
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1 viewer 

many viewers 

 Our method predicts more reliably the media tag 

(average score over many viewers) than the viewer’s 

own subjective report

⇒ People’s facial expressions are better correlated with 

the media tag than their own report

 Cognitive bias: facial expressions are more 

indicative of people’s emotions than verbal reports

⇒ Media tag is a better predictor of people’s emotional 

response than their own reports
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WHICH FEATURES CARRY THE INFORMATION
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 Once again, using (a small) training set and a learning-
based method leads to much improved performance in a 
very difficult task, the prediction of emotional tags

 Our method predicts more reliably the media tag (average 
score over many viewers) than the viewer’s own 
subjective report

 People’s facial expressions are better correlated with the media 
tag than with their own report

 Media tag is a better predictor of people’s emotional response 
than their own reports

 Bottom up detection of Highlight Period reveals high 
agreement between viewers

 Limitations: we use RGB-D video which is not always 
readily available, and the faceshift software which is no 
longer commercially available

SUMMARY
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 Extremely high prediction success

 Successful bottom up data-driven 

detection of periods of high emotional 

response

 If media tag is available, and if we believe 

the existence of a cognitive bias, it is a 

better predictor of emotional response 

than the person’s own report

MOST INTERESTING RESULTS
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Daniel Hadar

Talia Tron
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