NEW DATABASE* OF 36 VIDEO CLIPS
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* now publicly available




EMOTIONAL TAG PREDICTION: DATA COLLECTION
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EMOTIONAL TAG PREDICTION: SCENARIOS

o Implicit Media Tagging: from viewer’s facial
expressions, learn to predict the clip’s VALR score

balo]

o Affect Prediction: from viewers facial expressions, learn:
to predict her own subjective VALR report

o Training data:
» RGB-D recordings of facial expressions

» Set of training video clips with assigned ratings, either VALR
score or viewer'’s subjective VALR ratings
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o Task: predict VALR rating from recording of facial @
expressions when viewing a new video clip




RGB-D RECORDING: PRE-PROCESSING

o Compute time series intensity of ~50 Action
Units

o ldentify period of maximal emotional response
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ACTION UNITS IN FACIAL EXPRESSION OF VIEWERS

Clip

Facial

Response

[BEEaY|
aJdi

1O-1

o
0

Lips Corner
(AU-12)

o
o)

o
N

kS

o

time (sec.)

JT0Z-6+




RAW DATA

EvyeBlink_L
EyeBlink_R
EyeSquint_L
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BrowsD _1\
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LipsStretch_L
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LipsUpperClose
LipsLowerClose
LipsUpperUp
LipsLowerDown
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LipsLo werQ pen
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LipsPucker
ChinLowerRaise
ChinUpperRaise
Sneer
Pun
CheekSquint_L
CheekSquint_R
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TWO STEP PREDICTION ALGORITHM
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Py
o Step 1, analysis of short video segments: =
SJ'_J'_
» Divide HP into fixed size segments z
o fli predict emotional tag for each segment ;

o Step 2, analysis of whole clip:
» Compute moments of emotional tag prediction over all segments

o f2: predict final emotional tag

Leave One Out (LOO) train-test paradigm




FACIAL ACTIVITY CHARACTERIZING FEATURES

Bag of words:
- K-means clustering (k=7)
- Done simultaneously over all subjects and all videos
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FACIAL ACTIVITY CHARACTERIZING FEATURES

o Richness — The diversity in facial activity
throughout the video.
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FACIAL ACTIVITY CHARACTERIZING FEATURES

o Richness — The diversity in facial activity
throughout the video.

Low Richness High Richness 4
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appeared in the video in the video




FACIAL ACTIVITY CHARACTERIZING FEATURES

o Richness — The diversity in facial activity
throughout the video.

o Typicality — percent of variance explained by the 7
clusters.
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FACIAL ACTIVITY CHARACTERIZING FEATURES

o Richness — The diversity in facial activity
throughout the video.

o Typicality — percent of variance explained by the 7

clusters.

Low Typicality High Typicality
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FACIAL ACTIVITY CHARACTERIZING FEATURES

o Richness — The diversity in facial activity
throughout the video.

o Typicality — percent of variance explained by the 7
clusters/words.

o Cluster Distribution — The relative number of
frames in which each word appeared

R
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FACIAL FEATURES COMPUTATION

Intensity Features 3 4

o Ratio (Frequency) 2

o Level g | [[I |J| |_|\‘
0 v 7

Activation Level

O
X
Dynamic features fme .
o Length 3 - >
o Change : L L :
o Fast Change g JL TJ 1 L ﬁ ﬂ =
VLA T

Moment features time

o Mean, variance, skewness, kurtosis

Miscellaneous Features
o Number of smiles and blinks




TWO STEP PREDICTION ALGORITHM
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o Step 1, analysis of short video segments: %
a.  Divide HP into fixed size segments 2
Q
b. .fli predict emotional tag for each segment ©
o Step 2, analysis of whole clip: =

a.  Compute moments of emotional tag prediction over all segments

b. .f2: predict final emotional tag

Leave One Out (LOO) train-test paradigm




ICRI-CI 2017 Retreat, May 9, 2017 e
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EXAMPLE: ONE VIEWER



RESULTS

Valence Arousal Likability Rewatch

1 viewer IMT-1 52 (14 .T28 (07 637 (.22) 661 (.15)
many viewers
AP-1 66117 .638(19) 380 (16) 574 (197




RESULTS

Valence Arousal Likability Rewatch

1 viewer IMT-1 52 (14 .T28 (07 637 (.22) 661 (.15)
many viewers IMT-2 948 (22) .874 (22 951 (17) 953 (.19)
AP-1 661 (170 .638 (.19 .380 (.16) 574 (.19)

o Our method predicts more reliably the media tag
(average score over many viewers) than the viewer’s
own subjective report

- People’s facial expressions are better correlated with
the media tag than their own report

o Cognitive bias: facial expressions are more
iIndicative of people’s emotions than verbal reports

- Media tag Is a better predictor of people’s emotional Q
response than their own reports
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WHICH FEATURES CARRY THE INFORMATION

(A) VALENCE

Discrete

‘ 18%
'\ Dynamic
24%

(C) LIKABILITY

—— Moments
11%
\x Discrete
2%

(B) AROUSAL

Discrete

Dynamic

5%

(D) REWATCH
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SUMMARY

o Once again, using (a small) training set and a learning-
based method leads to much improved performance in a
very difficult task, the prediction of emotional tags

o Our method predicts more reliably the media tag (average
score over many viewers) than the viewer’'s own
subjective report

» People’s facial expressions are better correlated with the media
tag than with their own report

e Media tag is a better predictor of people’s emotional response
than their own reports

o Bottom up detection of Highlight Period reveals high
agreement between viewers

o Limitations: we use RGB-D video which is not always
readily available, and the faceshift software which is no
longer commercially available
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MOST INTERESTING RESULTS

o Extremely high prediction success

o Successful bottom up data-driven
detection of periods of high emotional
response

o If media tag Is available, and if we believe
the existence of a cognitive bias, it is a
better predictor of emotional response
than the person’s own report
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