
NEW DATABASE* OF 36 VIDEO CLIPS
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Size – Rewatch, color- Likability
* now publicly available
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EMOTIONAL TAG PREDICTION: DATA COLLECTION
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EMOTIONAL TAG PREDICTION: SCENARIOS

 Implicit Media Tagging: from viewer’s facial 

expressions, learn to predict the clip’s VALR score

 Affect Prediction: from viewers facial expressions, learn 

to predict her own subjective VALR report

 Training data: 

 RGB-D recordings of facial expressions 

 Set of training video clips with assigned ratings, either VALR 

score or viewer’s subjective VALR ratings

 Task: predict VALR rating from recording of facial 

expressions when viewing a new video clip
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RGB-D RECORDING: PRE-PROCESSING

 Compute time series intensity of ~50 Action 

Units

 Identify period of maximal emotional response
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CURRENT WORK
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ACTION UNITS IN FACIAL EXPRESSION OF VIEWERS
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RAW DATA
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Highlight Period
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TWO STEP PREDICTION ALGORITHM

 Step 1, analysis of short video segments:

 Divide HP into fixed size segments

 f1: predict emotional tag for each segment

 Step 2, analysis of whole clip:

 Compute moments of emotional tag prediction  over all segments

 f2: predict final emotional tag

prediction with regularized ridge regression

Leave One Out (LOO) train-test paradigm
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FACIAL ACTIVITY CHARACTERIZING FEATURES

Bag of words:

• K-means clustering (k=7)

• Done simultaneously over all subjects and all videos

AU1 intensity
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video. 
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video. 

High RichnessLow Richness
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video.

 Typicality – percent of variance explained by the 7 

clusters. 
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video.

 Typicality – percent of variance explained by the 7 

clusters. 

k

High TypicalityLow Typicality
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FACIAL ACTIVITY CHARACTERIZING FEATURES

 Richness – The diversity in facial activity 

throughout the video.

 Typicality – percent of variance explained by the 7 

clusters/words.

 Cluster Distribution – The relative number of 

frames in which each word appeared

k
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FACIAL FEATURES COMPUTATION

Intensity Features
 Ratio (Frequency)

 Level

Dynamic features
 Length

 Change

 Fast Change

Moment features
 Mean, variance, skewness, kurtosis

Miscellaneous Features
 Number of smiles and blinks
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TWO STEP PREDICTION ALGORITHM

 Step 1, analysis of short video segments:

a. Divide HP into fixed size segments

b. .f1: predict emotional tag for each segment

 Step 2, analysis of whole clip:

a. Compute moments of emotional tag prediction  over all segments

b. .f2: predict final emotional tag

prediction with regularized ridge regression

Leave One Out (LOO) train-test paradigm
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EXAMPLE: ONE VIEWER
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R=0.791
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RESULTS
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RESULTS
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1 viewer 

many viewers 

 Our method predicts more reliably the media tag 

(average score over many viewers) than the viewer’s 

own subjective report

⇒ People’s facial expressions are better correlated with 

the media tag than their own report

 Cognitive bias: facial expressions are more 

indicative of people’s emotions than verbal reports

⇒ Media tag is a better predictor of people’s emotional 

response than their own reports
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WHICH FEATURES CARRY THE INFORMATION
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 Once again, using (a small) training set and a learning-
based method leads to much improved performance in a 
very difficult task, the prediction of emotional tags

 Our method predicts more reliably the media tag (average 
score over many viewers) than the viewer’s own 
subjective report

 People’s facial expressions are better correlated with the media 
tag than with their own report

 Media tag is a better predictor of people’s emotional response 
than their own reports

 Bottom up detection of Highlight Period reveals high 
agreement between viewers

 Limitations: we use RGB-D video which is not always 
readily available, and the faceshift software which is no 
longer commercially available

SUMMARY
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 Extremely high prediction success

 Successful bottom up data-driven 

detection of periods of high emotional 

response

 If media tag is available, and if we believe 

the existence of a cognitive bias, it is a 

better predictor of emotional response 

than the person’s own report

MOST INTERESTING RESULTS
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