
You Have No (Predictive) Power Here, SPEC!

Jonathan Pearce

Intel/IL/ADR/AAL

1



• Motivation – what are the characteristics of ML training?

• Goal – how can computer arch make targeted improvements in ML?

• Proposal – what needs to change to achieve our goal?

• Call to Action – how can you help advance computer arch for ML?

2

Agenda



0.1

1

10

100

1000

2004 2006 2008 2010 2012 2014 2016

in
cr

e
a

se

year

Intel Xeon 2S SPECfp_rate 2006

Parallelism over time

• Significant advances in computer 
system capabilities are due to advances 
in ML training models on previously 
intractable problems.



Parallelism over time

• Significant advances in computer 
system capabilities are due to advances 
in ML training models on previously 
intractable problems.

0.1

1

10

100

1000

2004 2006 2008 2010 2012 2014 2016

in
cr

e
a

se

year

Intel Xeon 2S SPECfp_rate 2006 top500 TFLOPS



0.1

1

10

100

1000

2004 2006 2008 2010 2012 2014 2016

in
cr

e
a

se

year

SPECfp_rate 2006 ML model weights

top500 TFLOPS

Improvements in parallelism are outpaced by ML 

• Significant advances in computer 
system capabilities are due to advances 
in ML training models on previously 
intractable problems.

• Difficulty of ML problems being 
successfully tackled has increased by 
1000x in a few years, outpacing Moore’s 
Law.

• How to quantify the problem capacity of 
a computer system?

• Model size is poorly correlated

• And track increase over time?

Hinton

DistBelief

DeepFace

GoogLeNet

AlexNet

2x more operations/iteration & 4x better accuracy 

than AlexNet with only 1/12 #weights 



ML Scalability Bottleneck

Amdahl’s Law, not Gustafson's Law!

Many ML problems (images, natural 
language) have a Many 
techniques to reduce work performed 
(stochastic optimization, sampling) also 
reduce parallelism.

SPEC & HPC benchmarks are designed to 
be embarrassingly parallel or exhibit ideal 
scalability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 16 32 48 64 80 96 112 128

sc
a

li
n

g
 e

ff
ic

ie
n

cy

processing elements

Theoretical Scaling 

Efficiency with Amdahl's Law



Computation Patterns – Sparse Datasets (text, graphs)
ML Locality, Predictability, 

Dimensionality differ from HPC

Poor efficiency on existing 
architectures means big 
opportunity!

Sparse-Sparse
Linear Algebra

Sparse-Dense
Linear Algebra

Dense-Dense
Linear Algebra

Strings &
Regular 

Expressions

Sparse-Sparse
Sparse-Dense

or Graph 
Operations



Data distribution 
physical simulation vs. natural language
Commanche_dual
0.05% non-zero elements

Rcv1.binary
0.20% non-zero elements

7,920 ×7,920
4 nnz/row

677,399 × 47,236
74 nnz/row



Computation Patterns – Dense Datasets (images, IoT)

Many familiar primitives 
common to ML and HPC 
algorithms 

Dense-Dense
Linear Algebra

Strings &
Regular 

Expressions



Goal – Relevance to machine learning

A new metric which captures the work done within the 
“ ”: 

No one wants to wait more than a few days or a week for a result.[1]

• The ranking of systems using the new metric must correlate to how our real 
applications would rank these same systems in terms of max problem size. 

• The metric should be designed so that, as we try to optimize the metric, the 
changes will also lead to larger problem sizes solved in our real applications. 

• The metric must encompass both computation and accuracy.

• A new metric should allow useful comparisons between unlike systems.

[1] Dean, J: Large Scale Deep Learning. CIKM Keynote 2014.



System Under Test

SPEC FP CPU 2006

• CPU

• Memory architecture

• Compiler

SPEC MPIM2007

• CPU 

• Memory architecture

• Compiler

• Number of CPUs

• communication between
CPUs

• Shared file system

SPEC ACCEL 1.0

• Accelerator 

• Host

• Compiler

• communication between 

accelerator and host

• Support library & drivers



ML System

All of the above, plus the optimization technique and model architecture 



ML Benchmark Desiderata

Measures the “patience threshold”: how large a problem can the system train?

• Proxy for increase in problem size 

Allow room for huge improvement over time

• On both small and large computer systems

Allow modularity in methods

• Quantify the effect of new optimization strategies and new model advances

Allows variation in results

• Extremely important optimizations will create different models and classification 
accuracy 



ML Benchmark Metric Possibilities

𝐵𝑎𝑠𝑒=
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑖𝑚𝑒

𝑆𝑦𝑠𝑡𝑒𝑚𝑢𝑛𝑑𝑒𝑟𝑡𝑒𝑠𝑡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑖𝑚𝑒

𝐸𝑟𝑟𝑜𝑟𝑟𝑎𝑡𝑒=
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠𝑦𝑠𝑡𝑒𝑚𝑒𝑟𝑟𝑜𝑟

𝑆𝑦𝑠𝑡𝑒𝑚𝑢𝑛𝑑𝑒𝑟𝑡𝑒𝑠𝑡𝑒𝑟𝑟𝑜𝑟

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑
=𝐹𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑖𝑚𝑒,𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

All metrics should exclude time to test



Call to Action – Open questions

• Which problems will be at the limit of the patience threshold in the 
near future? on what size computer system? that relies on data that 
can be freely distributed? 

• How do we define an interesting weighted score (i.e. speedup divided 
by error, or marginal time to train last 1% accuracy)? Is error the right 
measure of relevance for comparing different types of systems? 

• How to specify the reference implementation(s)? Which APIs?

• What are the restrictions on allowed modifications to the system? 
E.g. must read every sample at least once… 

• How to sample such a benchmark for arch simulation?

jonathan.d.pearce@intel.com


