You Have No (Predictive) Power Here, SPEC!

Jonathan Pearce

Intel/IL/ADR/AAL

Agenda

* Motivation — what are the characteristics of ML training?
* Goal - how can computer arch make targeted improvements in ML?

* Proposal — what needs to change to achieve our goal?

* Call to Action — how can you help advance computer arch for ML?

Parallelism over time

« Significant advances in computer
system capabilities are due to advances
in ML training models on previously
intractable problems.

increase

1000

100

10

0.1

Intel Xeon 2S SPECfp_rate 2006

2004 2006 2008 2010 2012 2014 2016
year

Parallelism over time

* Significant advances in computer s |ntel Xeon 25 SPECfp_rate 2006 top500 TFLOPS
system capabilities are due to advances 1000
in ML training models on previously
intractable problems.
100 2
§ /
§ 10 /

0-1 T T T T T 1
2004 2006 2008 2010 2012 2014 2016

year

H

Improvements in parallelism are outpaced by ML

e SPECfp_rate 2006 ¢ ML model weights

« Significant advances in computer top500 TFLOPS
system capabilities are due to advances 1000 ®
in ML training models on previously DistBelief
intractable problems.
100 0
* Difficulty of ML problems being 7 eepFace
successfully tackled has increased by %D

1000x in a few years, outpacing Moore’s 0 /

Law. o <
] GooglLeNet

* How to quantify the problem capacity of Hinton /

increase

a computer system?

0-1 T T T T T 1
* Model size is poorly correlated 2004 2006 2008 2010 2012/2014 2016

year
And track increase over time?

2x more operations/iteration & 4x better accuracy
than AlexNet with only 1/12 #weights

ML Scalability Bottleneck

Amdahl's L t Gustafson's Law! i i
mdahl’s Law, not Gustafson's Law Theoretical Scaling

Many ML problems (images, natural Efficiency with Amdahl's Law
language) have a fundamental size. Many]
techniques to reduce work performed 09 1\
(stochastic optimization, sampling) also _ 08 \\
reduce parallelism. £ g'; \
SPEC & HPC benchmarks are designed to E,g'i \\
be embarrassingly parallel or exhibit ideal .—§ 03 N
scalability. ® o2 e~
0.1 —
0]

0] 16 32 48 64 80 96 112 128
processing elements

M

Computation Patterns — Sparse

Sparse-Sparse

Dominant operation type in hot
[

or)

Linear Algebr

(classifi =svalue);

xi++;

nseV[Sparse’]

SparseV * SparseV/

K - dis, @3 1 < x.MumFeatures(}; ++i)

$x.Valueht(i);

DenseV[SparseV|

Sparse-Dense
Linear Algebra

DenseV[SparseV[i]]

[3+11; k++)

Datasets (text, sraphs)

ML Locality, Predictability,
Dimensionality differ from HPC

Poor efficiency on existing
architectures means big
opportunity!

Recommendatiol = . g ’
engine 5! e = ALlkl;

W&H

Dense-Dense

12]; //CBOW
c+ 1

DenseV * DenseV

Linear Algebra /™

Oll'Sf); -l--l-."l“)" N

= covm.cols(); ++3)

omposition code in sgfia

Strings?“\

= y[i1*v[31; /*covariance

gnu-lib and arithmetic ops.

DenseV * Dense’

DenseV * DenseV

Regular
Expressions

Vi s gnu-lib string splittin d

character find/match ops™'

i\ onuib string-to-float ops=2

Sparse-Sparse "

ot kernel(s)

-
inNbrs {PRIW]/W ot Sparse Matrix * Dense
Vector

ol
ndex|;

inary search
Sparse-Dense
or Graph e | R
O p e rat i O n S s(vid) ersection of two list:

Data distribution
physical simulation vs. natura

Commanche_dual Rcv
0.05% non-zero elements 0.20
5 T 5 o
: RN - Sl :
. o X - N
. =ty A -.4?.':“ e E -
- .,_.-_,_rl:,_l-ja:ﬂfl'-'
SR S L m
L""I-F _ N FI-‘-I:_- o
:t e P
#orEl L .
J et N
- -ﬂ.ll.'m‘:..h L-. .
T L I
7,920 x7,920 677,399 x 47,236
4 nnz/row 74 nnz/row

Computation Patterns — Dense Datasets (images, |oT)

Hot compute pattern(s)

Dominant operation type in hot
compute pattern (V=Vector)

->index}
>val

SparseV * SparseV/

enseV/[SparseV|

/ DenseV[SparseV[1]

G += wxi-
xi++;
tures{); ++1i)
Tueht(i);
Dense-Dense .
ue;

Linear Algebra

!

DenseV[SparseV[i]]

o[SparseV[i]]

121; //56

and mul ops

nu-lib and arithmetic ops.

reduction)

1 < covm.rows(); ++i)
=@8; j < covm.cols(); ++)
1,3) += y[i1*v[31; f*covariance g

DenseV * Dense’

SVD (di ion =

W‘(lon code 1n%

DenseV * DenseV

Strlngs &
Regular
Expressions

10 bound when the number of tlas:
Cision tree iz 10 bound (fypically single pa

gyfus gnu-lib string splittindsgnd
character find/match ops™'

gnu-lib string-to-float ops™

are smal (single pass over
er data in com

in computation phase)
phase}

Many familiar primitives
common to ML and HPC
algorithms

Workload

Package

Hot kernel(s)

Cgmpute pattern(

Pagerank|GreenMarl

sum(w: v.inNbrs {PR[w]/w.outDeg})

Sparse Matrix * Dens

Vector

Triangle
Counting

GreenMarl

while(<edge not found=){
\ id val = arrmidindex];

Val)

searchLeft(...),

else ifimid_val > edgeVal)
searchRight(_..);

else return(midindex);

}

!

Binary search

Pagerank

GraphX

for((key,val) in keyValList{
newSet(key) = reduce(val,
newSet(key));
}

\

Aggregate by key
(reduce)

Triangle
Counting

GraphX

while(iter. hasNext){
val vid = iter next();
if largeSet contains(vid)
count++;

}

rsection of two list;

Goal — Relevance to machine learning

A new metric which captures the work done within the
No one wants to wait more than a few days or a week for a result.[1]

[1] Dean, J: Large Scale Deep Learning. CIKM Keynote 2014.
BT pu ,
Unlike SPEC,

* The ranking of systems using the new metric must correlate to how our real
applications would rank these same systems in terms of max problem size.

 The metric should be designed so that, as we try to optimize the metric, the
changes will also lead to larger problem sizes solved in our real applications.

* The metric must encompass both computation and accuracy.

* A new metric should allow useful comEarisons between unlike sxstemm

System Under Test

SPEC FP CPU 2006 SPEC MPIM2007
- CPU - CPU
 Memory architecture + Memory architecture
 Compiler Compiler
* Number of CPUs

H

communication between
CPUs

Shared file system

SPEC ACCEL 1.0

Accelerator
e Host
« Compiler

e communication between
accelerator and host

* Support library & drivers

ML System

SPEC CPU 2006 SPEC MPIM2007
» CPU » CPU
e Memory architecture * Memory architecture
e Compiler e Compiler
° Number of CPUs

All of the above, plus the optimization technique and model architectub

communication between
CPUs

Shared file system

SPEC ACCEL 1.0

Accelerator
Host
Compiler

communication between
accelerator and host

Support library & drivers

ML Benchmark Desiderata

Measures the “patience threshold”: how large a problem can the system train?

* Proxy for increase in problem size without redefining a new (bigger) problem
every year

Allow room for huge improvement over time

* On both small and large computer systems

Allow modularity in methods

* Quantify the effect of new optimization strategies and new model advances
Allows variation in results

* Extremely important optimizations will create different models and classification
accuracy which is a key part of the system under test

H

ML Benchmark Metric Possibilities

= (,)

aka How fast does the system solve this aka How to compare low accuracy/fast
problem? (meeting or exceeding a methods against high accuracy/slow
reference accuracy) methods

aka How well does the system solve this
problem? (with a fixed training time)

All metrics should exclude time to test m

Call to Action — Open guestions

* Which problems will be at the limit of the patience threshold in the
near future? on what size computer system? that relies on data that
can be freely distributed?

 How do we define an interesting weighted score (i.e. speedup divided
by error, or marginal time to train last 1% accuracy)? Is error the right
measure of relevance for comparing different types of systems?

* How to specify the reference implementation(s)? Which APIs?

 What are the restrictions on allowed modifications to the system?
E.g. must read every sample at least once...

 How to sample such a benchmark for arch simulation?

'|onathan.d.gearce@intel.com ﬂ-

