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Agenda

* Motivation — what are the characteristics of ML training?
* Goal - how can computer arch make targeted improvements in ML?

* Proposal — what needs to change to achieve our goal?

* Call to Action — how can you help advance computer arch for ML?




Parallelism over time

« Significant advances in computer
system capabilities are due to advances
in ML training models on previously
intractable problems.
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Parallelism over time
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Improvements in parallelism are outpaced by ML

e SPECfp_rate 2006 ¢ ML model weights
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ML Scalability Bottleneck
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Computation Patterns — Sparse
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Data distribution
physical simulation vs. natura
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Computation Patterns — Dense Datasets (images, |oT)

Hot compute pattern(s)
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Goal — Relevance to machine learning

A new metric which captures the work done within the
No one wants to wait more than a few days or a week for a result.[1]

[1] Dean, J: Large Scale Deep Learning. CIKM Keynote 2014.
BT pu ,
Unlike SPEC,

* The ranking of systems using the new metric must correlate to how our real
applications would rank these same systems in terms of max problem size.

 The metric should be designed so that, as we try to optimize the metric, the
changes will also lead to larger problem sizes solved in our real applications.

* The metric must encompass both computation and accuracy.

* A new metric should allow useful comEarisons between unlike sxstemm




System Under Test
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ML System

SPEC CPU 2006 SPEC MPIM2007
» CPU » CPU
e Memory architecture * Memory architecture
e Compiler e Compiler
° Number of CPUs

All of the above, plus the optimization technique and model architectub

communication between
CPUs

Shared file system

SPEC ACCEL 1.0

Accelerator
Host
Compiler

communication between
accelerator and host

Support library & drivers




ML Benchmark Desiderata

Measures the “patience threshold”: how large a problem can the system train?

* Proxy for increase in problem size without redefining a new (bigger) problem
every year

Allow room for huge improvement over time

* On both small and large computer systems

Allow modularity in methods

* Quantify the effect of new optimization strategies and new model advances
Allows variation in results

* Extremely important optimizations will create different models and classification
accuracy which is a key part of the system under test
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ML Benchmark Metric Possibilities

= ( , )

aka How fast does the system solve this aka How to compare low accuracy/fast
problem? (meeting or exceeding a methods against high accuracy/slow
reference accuracy) methods

aka How well does the system solve this
problem? (with a fixed training time)

All metrics should exclude time to test m




Call to Action — Open guestions

* Which problems will be at the limit of the patience threshold in the
near future? on what size computer system? that relies on data that
can be freely distributed?

 How do we define an interesting weighted score (i.e. speedup divided
by error, or marginal time to train last 1% accuracy)? Is error the right
measure of relevance for comparing different types of systems?

* How to specify the reference implementation(s)? Which APIs?

 What are the restrictions on allowed modifications to the system?
E.g. must read every sample at least once...

 How to sample such a benchmark for arch simulation?
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